SOLUSI PERSAMAAN DIOPHANTINE NON-LINIER EKSPONENSIAL 〖11〗^Q+〖13〗^R+〖〖31〗^S+37〗^T=U^2-1 BESERTA ARAH PENELITIAN BERIKUTNYA.

Authors

  • Agus Sugandha Universitas Jenderal Soedirman

DOI:

https://doi.org/10.54199/pjse.v3i2.233

Keywords:

non-linear Diophantine equation, theory congruence, Catalan conjecture, Pell’s equation

Abstract

Penelitian ini membahas pembuktian solusi persamaan Diophantine Non-Linear eksponensial   dengan q,r,s,t  bulat non negative, dan  bulat positif. Metode untuk menyelesaikan persamaan Diophantine non-linear  dengan menggunakan teori kongruensi beserta sifat-sifatnya. Berdasarkan hasil penelitian menunjukkan bahwa persamaan Diophantine non-linear eksponensial mempunyai solusi (1,0,1,1,9) dan (3,2,3,177)

References

Bacani dan Rabago. 2014. On The Diophantine Equation 2 3 5 7 x y z + + = w . Konurlap Jurnal Of Mathemaics, (2), 2, 64-69.

Rabago, J. F. T. (2016). On The Diophantine Equation 2 2 17 . x y + = z Indonesia Journal Mathematics Social, (22), 2, 177- 181.

Rahmawati, R., Sugandha, A., Tripena, A., Prabowo, A. (2019). The Solution for the Non-Linier Diophantine Equation 2 (7 1) (7 ) k x k y − + = z with k as the positive even whole number. IOP Conference Series: Materials Science and Engineering (1179), 1, 1742-6596.

Rosen, K. H. (1986). Elementary Number Theory and Its Applications. London: Addision- Wesley Publishing Company.

Scott, R., dan R.Styer. (2004). On px-qy = c and related three term exponential Diophantine Equations with prime bases. J. Number Theory, (105), 2012-234.

Siburian, B. M., Mashadi, dan Gemawati, S. (2015). Solusi Bilangan Bulat Suatu Persamaan Diophantine Melalui Bilangan Fibonacci dan Bilangan Lucas. JOM FMPA, (2), 417-425.

Simtrakankul, C. (2014). On The Diophantine Equation ( ) ( ) 2 2 1 2 . x y k k − + = z International Journal of Pure and Applied Mathematics, (94), 1, 65-69.

Sroysang, B. (2012a). On The Diophantine Equation 2 3 . 5x y z += International Journal of Pure and Applied Mathematics, (81), 4, 605-608.

Sroysang, B. (2012b). On The Diophantine Equation 2 31 32 . x y z += International Journal of Pure and Applied Mathematics, (81), 4, 609-612.

[ Sroysang, B. (2013a). On The Diophantine Equation 2 7 . 8x y z += International Journal of Pure and Applied Mathematics, (84), 1, 111-114.

Sroysang, B. (2013b). On The Diophantine Equation 2 2 3 . x y + = z International Journal of Pure and Applied Mathematics, (84), 2, 133-137.

Sugandha, A., Tripena, A., Pabowo, A., dan Sukono, F. (2018). Nonlinear Diophantine Equation 2 11 13 . x y + = z IOP Conference Series: Materials Science and Engineering 332, 012004, 1-4.

Sukirman. (2006). Pengantar Teori Bilangan. Yogyakarta: Hanggar Kreator.

Downloads

Published

2023-08-10

Issue

Section

Artikel