PENGARUH INTERLAYER ZN PADA KEKUATAN MEKANIK SAMBUNGAN FRICTION STIR SPOT WELDING MATERIAL ALUMUNIUN PADUAN

Authors

  • Lingga Arti Saputra Universitas Perwira Purbalingga
  • Zakariyya Al-Mufarid

DOI:

https://doi.org/10.54199/pjse.v1i1.27

Keywords:

Friction, Welding, Interlayer Zn, Alumunium

Abstract

Pemanasan global salah satunya disebabkan CO2 yang dihasilakan oleh kendaraan bermotor. Industri otomotif mulai mengembangkan teknologi untuk mengurangi gas buang yang mengandung CO2. Material alumunium  yang ringan mampu meningkatkan efisiensi kendaraan. Pengelasan FSSW mampu mengambungkan material alumunium karena mimiliki sifat solid-state. Pengunaan interlayer mampu menurunkan terbentuknya hook defect. Hasil uji tarik geser tertinggi dengan menambahkan interlayer Zn (4.5kN), tanpa interlayer Zn (3.9kN). pengujian kekerasan vikers sambungan dengan interlayer Zn terletak pada pusat nugget pada dwell time 8s. Penggunaan interlayer Zn secara signifikan dapat meningkatkan kakuatan dan nilai kekekerasan sambungan

References

O. N. Kusminingrum, “POTENSI TANAMAN DALAM MENYERAP CO 2 DAN CO UNTUK MENGURANGI DAMPAK PEMANASAN GLOBAL,” vol. 3, no. 2, 2008.

M. Agus, Fahmuddin and Runtunuwu, Eleonora and June, Tania and Susanti, Erni and Komara, Herna and Syahbuddin, Haris and Las, Irsal and van Noordwijk, “Carbon dioxide emission in land use transitions to plantation,” J. Litbang Pertan., vol. 28, no. 4, pp. 199–126, 2009.

D. Muziansyah, “Model Emisi Gas Buangan Kendaraan Bermotor Akibat Aktivitas Transportasi ( Studi Kasus : Terminal Pasar Bawah Ramayana Koita Bandar Lampung ) Terminal Pasar Bawah Ramayana yang berada di pusat Kota Bandar Lampung Emisi Gas Buang Kendaraan Bermotor Akibat Aktivitas Transportasi ” dengan studi kasus,” vol. 3, no. 1, pp. 57–70, 2015.

C. Yuce, F. Karpat, and N. Yavuz, “Investigations on the microstructure and mechanical properties of laser welded dissimilar galvanized steel – aluminum joints,” 2019.

M. D. Tier et al., “The influence of refill FSSW parameters on the microstructure and shear strength of 5042 aluminium welds,” J. Mater. Process. Technol., vol. 213, no. 6, pp. 997–1005, 2013, doi: 10.1016/j.jmatprotec.2012.12.009.

R. Balasundaram, V. K. Patel, S. D. Bhole, and D. L. Chen, “Materials Science & Engineering A Effect of zinc interlayer on ultrasonic spot welded aluminum-to-copper joints,” Mater. Sci. Eng. A, vol. 607, pp. 277–286, 2014, doi: 10.1016/j.msea.2014.03.135.

X. Dai, H. Zhang, H. Zhang, J. Liu, and J. Feng, “Joining of magnesium and aluminum via arc-assisted ultrasonic seam welding with Sn/Zn composite interlayer,” Mater. Lett., vol. 178, pp. 235–238, 2016, doi: 10.1016/j.matlet.2016.04.064.

S. Dhara and A. Das, “Impact of ultrasonic welding on multi-layered Al–Cu joint for electric vehicle battery applications: A layer-wise microstructural analysis,” Mater. Sci. Eng. A, p. 139795, 2020, doi: 10.1016/j.msea.2020.139795.

H. T. Fujii, Y. Goto, Y. S. Sato, and H. Kokawa, “Microstructure and lap shear strength of the weld interface in ultrasonic welding of Al alloy to stainless steel,” Scr. Mater., vol. 116, pp. 135–138, 2016, doi: 10.1016/j.scriptamat.2016.02.004.

X. Gu, C. Sui, J. Liu, D. Li, Z. Meng, and K. Zhu, “Microstructure and mechanical properties of Mg/Al joints welded by ultrasonic spot welding with Zn interlayer,” Mater. Des., vol. 181, p. 108103, 2019, doi: 10.1016/j.matdes.2019.108103.

J. Chen, X. Yuan, Z. Hu, T. Li, K. Wu, and C. Li, “Improvement of resistance-spot-welded joints for DP 600 steel and A5052 aluminum alloy with Zn slice interlayer,” J. Manuf. Process., vol. 30, pp. 396–405, 2017, doi: 10.1016/j.jmapro.2017.10.009.

M. Huang, Q. Zhang, L. Qi, L. Deng, and Y. Li, “Effect of external magnetic field on resistance spot welding of aluminum alloy AA6061-T6,” J. Manuf. Process., vol. 50, no. December 2019, pp. 456–466, 2020, doi: 10.1016/j.jmapro.2020.01.005.

M. Haghshenas, A. Abdel-Gwad, A. M. Omran, B. G??k??e, S. Sahraeinejad, and A. P. Gerlich, “Friction stir weld assisted diffusion bonding of 5754 aluminum alloy to coated high strength steels,” Mater. Des., vol. 55, pp. 442–449, 2014, doi: 10.1016/j.matdes.2013.10.013.

R. Thompson, G. Alvarez, and S. C. Absi, “Two gas metal arc welding process dataset of arc parameters and input parameters,” vol. 35, 2021, doi: 10.1016/j.dib.2021.106790.

Y. Bozkurt and M. K. Bilici, “Application of Taguchi approach to optimize of FSSW parameters on joint properties of dissimilar AA2024-T3 and AA5754-H22 aluminum alloys,” Mater. Des., vol. 51, pp. 513–521, 2013, doi: 10.1016/j.matdes.2013.04.074.

J. Y. Cao, M. Wang, L. Kong, and L. J. Guo, “Hook formation and mechanical properties of friction spot welding in alloy 6061-T6,” J. Mater. Process. Technol., vol. 230, pp. 254–262, 2016, doi: 10.1016/j.jmatprotec.2015.11.026.

B. Hessel, U. Fuad, H. Suhuddin, G. Zepon, and C. Bolfarini, “Materials Science & Engineering A Refill friction stir spot welding of AA6082-T6 alloy : Hook defect formation and its influence on the mechanical properties and fracture behavior,” Mater. Sci. Eng. A, no. October, p. 138724, 2019, doi: 10.1016/j.msea.2019.138724.

R. Z. Xu, D. R. Ni, Q. Yang, C. Z. Liu, and Z. Y. Ma, “Influencing mechanism of Zn interlayer addition on hook defects of friction stir spot welded Mg – Al – Zn alloy joints,” vol. 69, pp. 163–169, 2015, doi: 10.1016/j.matdes.2014.12.045.

N. Farmanbar, S. M. Mousavizade, and H. R. Ezatpour, “Achieving special mechanical properties with considering dwell time of AA5052 sheets welded by a simple novel friction stir spot welding,” Mar. Struct., vol. 65, no. December 2018, pp. 197–214, 2019, doi: 10.1016/j.marstruc.2019.01.010.

R. Z. Xu, D. R. Ni, Q. Yang, C. Z. Liu, and Z. Y. Ma, “Influence of Zn interlayer addition on microstructure and mechanical properties of friction stir welded AZ31 Mg alloy,” J. Mater. Sci., pp. 4160–4173, 2015, doi: 10.1007/s10853-015-8841-3.

R. Z. Xu, D. R. Ni, Q. Yang, C. Z. Liu, and Z. Y. Ma, “Journal of Materials Science & Technology Pinless Friction Stir Spot Welding of Mg ‒ 3Al ‒ 1Zn Alloy with Zn Interlayer,” vol. 32, pp. 76–88, 2016, doi: 10.1016/j.jmst.2015.08.012.

L. Arti Saputra, N. Muhayat, and T. Triyono, “Effect of Zn Interlayer Particles on Mechanical Properties and Microstructure of Friction Stir Spot Welding Aluminum Alloy,” MATEC Web Conf., vol. 218, pp. 1–6, 2018, doi: 10.1051/matecconf/201821804005.

A. Boucherit and R. Taillard, “Effect of a Zn interlayer on dissimilar FSSW of Al and Cu,” Mater. Des., 2017, doi: 10.1016/j.matdes.2017.03.063.

Z. Zhang, X. Yang, J. Zhang, G. Zhou, X. Xu, and B. Zou, “Effect of welding parameters on microstructure and mechanical properties of friction stir spot welded 5052 aluminum alloy,” Mater. Des., vol. 32, no. 8–9, pp. 4461–4470, 2011, doi: 10.1016/j.matdes.2011.03.058.

Published

2021-03-23

Issue

Section

Artikel