Analisis peran anvil plate terhadap sifat mekanik sambungan Friction Stir Spot Welding AA5052

Authors

  • Yudha Eko Widyantono Institut Teknologi Nasional Yogyakarta

DOI:

https://doi.org/10.54199/pjse.v5i2.533

Keywords:

Friction Stir Spot Welding (FSSW), AA5052-H32, Anvil Plate, Sifat Mekanik

Abstract

Friction Stir Spot Welding (FSSW) merupakan pengembangan dari metode pengelasan Friction Stir Welding (FSW) yang diterapkan di industri dengan tujuan untuk menggantikan metode pengelasan Resistance Spot Welding (RSW). Dalam penelitian ini, FSSW diterapkan untuk menyambung pelat paduan aluminium 5052-H32 dan pelat baja standar JIS G 3136. Variabel utama yang digunakan dalam penelitian ini adalah jenis anvil plate yang terdiri dari granit, baja AISI 1010, dan paduan Al-Si, sedangkan parameter pengelasan yang digunakan adalah kecepatan putar 1000 rpm, waktu penahanan (dwell time) selama 5 detik, dan kedalaman penekanan (plunge depth) sebesar 0,2 mm yang dijadikan sebagai variabel tetap. Konduktivitas termal dari anvil plate memengaruhi kekerasan sambungan las FSSW dan beban geser tarik (tensile shear load) dari sambungan las. Anvil plate berbahan granit menghasilkan suhu pengelasan sebesar 167,37°C, baja AISI 1010 sebesar 113,18°C, dan Al-Si sebesar 100,88°C. Peningkatan konduktivitas termal menyebabkan sambungan las menjadi lebih keras. Anvil plate granit menghasilkan kekerasan Vickers sebesar 36,5 HVN, baja AISI 1010 sebesar 47 HVN, dan Al-Si sebesar 49,5 HVN. Beban geser tarik dipengaruhi oleh ukuran nugget yang terbentuk. Anvil plate granit menghasilkan rata-rata beban geser tarik sebesar 3986,98 N, baja AISI 1010 sebesar 3769,00 N, dan Al-Si sebesar 3414,32 N

References

M. Awang, V. H. Mucino, Z. Feng, and S. A. David, “Thermo-Mechanical Modeling of Friction Stir Spot Welding (FSSW) Process: Use of an Explicit Adaptive Meshing Scheme Downloaded from SAE International by Univ of Nottingham-Kings Meadow Campus,” 2005.

R. S. Mishra and Z. Y. Ma, “Friction stir welding and processing,” Aug. 31, 2005.

S. O. Dahi, A. A. A. Al-Shawk, and H. Al-Gburi, “Effect of Friction Stir Spot Welding with a Rotating Anvil on the Microstructure of Aluminum AA6061-T4 Alloy,” Mathematical Modelling of Engineering Problems, vol. 11, no. 3, pp. 721–726, Mar. 2024.

“Test Method for Microindentation Hardness of Materials,” Jun. 01, 2017, ASTM International, West Conshohocken, PA. doi: 10.1520/E0384-17.

N. Muhayat et al., “Friction stir welded aa5052‐h32 under dissimilar pin profile and preheat temperature: Microstructural observations and mechanical properties,” Metals (Basel), vol. 12, no. 1, Jan. 2022.

R. Belnap et al., “Evaluating the Influence of Tool Material on the Performance of Refill Friction Stir Spot Welds in AA2029,” Journal of Manufacturing and Materials Processing, vol. 8, no. 3, Jun. 2024.

Incropera, Fundamental of Heat and Mass Transfer. 2007.

Yunus A. Chengels and Afshin J. Ghajar, Heat and Mass Transfer. 2011.

A. Zubaydi et al., “Effect of backplate thermal diffusivity on mechanical properties of double sided friction stir welded aluminum for ship structure,” in Applied Mechanics and Materials, Trans Tech Publications Ltd, 2014, pp. 219–222.

Z. Zhang, W. Li, J. Shen, Y. J. Chao, J. Li, and Y. E. Ma, “Effect of backplate diffusivity on microstructure and mechanical properties of friction stir welded joints,” Mater Des, vol. 50, pp. 551–557, 2013.

D. Vijayan and V. S. Rao, “Friction Stir Welding of Age-Hardenable Aluminum Alloys: A Parametric Approach Using RSM Based GRA Coupled With PCA,” Journal of The Institution of Engineers (India): Series C, vol. 95, no. 2, pp. 127–141, Apr. 2014.

Z. Zhang, X. Yang, J. Zhang, G. Zhou, X. Xu, and B. Zou, “Effect of welding parameters on microstructure and mechanical properties of friction stir spot welded 5052 aluminum alloy,” Mater Des, vol. 32, no. 8–9, pp. 4461–4470, Sep. 2011.

H. Ardianto, T. Dirgantara, and S. Abstrak, “Efek Friction Stir Spot Welding Dalam Pemasangan Rivet Terhadap Sifat Mekanik Material Almunium Seri 2024,” 2021.

M. M. Z. Ahmed, M. M. El-Sayed Seleman, I. Albaijan, and A. Abd El-Aty, “Microstructure, Texture, and Mechanical Properties of Friction Stir Spot-Welded AA5052-H32: Influence of Tool Rotation Rate,” Materials, vol. 16, no. 9, May 2023.

Filbert Manggala Sulianto, Sulardjaka, and Norman Iskandar, “Analisis Nilai Kekerasan Dan Struktur Mikro Hasil Pengelasan Friction Stir Welding Sambungan T-Joint Aluminium 5052-H32 Dan Aluminium 7075-T651,” Jurnal Teknik Mesin S-1, vol. Vol. 12, No. 2, 2024, Accessed: Jun. 07, 2025.

M. M. Z. Ahmed et al., “Friction Stir-Spot Welding of AA5052-H32 Alloy Sheets: Effects of Dwell Time on Mechanical Properties and Microstructural Evolution,” Materials, vol. 16, no. 7, Apr. 2023.

G. A. Roeen, S. G. Yousefi, R. Emadi, M. Shooshtari, and S. Lotfian, “Remanufacturing the aa5052 gtaw welds using friction stir processing,” Metals (Basel), vol. 11, no. 5, May 2021.

T. Baudin, S. Bozzi, F. Brisset, and H. Azzeddine, “Local Microstructure and Texture Development during Friction Stir Spot of 5182 Aluminum Alloy,” Crystals (Basel), vol. 13, no. 3, Mar. 2023.

A. G. Wiedenhoft, H. J. de Amorim, T. de Souza Rosendo, M. A. Durlo Tier, and A. Reguly, “Effect of heat input on the mechanical behaviour of Al-Cu FSW lap joints,” Materials Research, vol. 21, no. 4, 2018.

F. Martins et al., “Effect of Friction Stir Welding on Microstructure and Mechanical Properties of uns C19400 Alloy Plates,” Materials Research, vol. 26, 2023.

S. Señorís-Puentes, R. F. Serrano, G. González-Doncel, J. H. Hattel, and O. V. Mishin, “Microstructure and mechanical properties of friction stir welded AA6061/AA6061 + 40 vol% SiC plates,” Metals (Basel), vol. 11, no. 2, pp. 1–11, Jan. 2021.

S. Park, Y. Joo, and M. Kang, “Effect of backing plate materials in micro-friction stir butt welding of dissimilar aa6061-t6 and aa5052-h32 aluminum alloys,” Metals (Basel), vol. 10, no. 7, pp. 1–9, Jul. 2020.

T. Baudin, S. Bozzi, F. Brisset, and H. Azzeddine, “Local Microstructure and Texture Development during Friction Stir Spot of 5182 Aluminum Alloy,” Crystals (Basel), vol. 13, no. 3, Mar. 2023.

D. G. Mohan and S. Gopi, “Influence of In-situ induction heated friction stir welding on tensile, microhardness, corrosion resistance and microstructural properties of martensitic steel,” Engineering Research Express, vol. 3, no. 2, Jun. 2021.

H. Y. Huang, I. C. Kuo, and C. W. Zhang, “Friction-stir welding of aluminum alloy with an iron-based metal as reinforcing material,” Science and Engineering of Composite Materials, vol. 25, no. 1, pp. 123–131, Jan. 2018.

S. S. Baghel and P. K. Soni, “An experimental study of friction stir welding parameters effect on joint properties of aluminium alloy and copper plate,” Mater Res Express, vol. 10, no. 1, Jan. 2023.

W. H. Khalafe, E. L. Sheng, M. R. Bin Isa, A. B. Omran, and S. Bin Shamsudin, “The Effect of Friction Stir Welding Parameters on the Weldability of Aluminum Alloys with Similar and Dissimilar Metals: Review,” Dec. 01, 2022, MDPI.

A. Kar, S. Mathiyalagan, S. Malopheyev, R. Kaibyshev, S. Suwas, and S. V. Kailas, “Investigation on Friction Stir Welding Parameters: Mechanical Properties, Correlations and Corrosion Behaviors of Aluminum/Titanium Dissimilar Welds,” Crystals (Basel), vol. 14, no. 4, Apr. 2024.

K. Chen, “Advanced Friction Stir Spot Welding of Aluminum Alloy to Transformation Induced Plasticity Steel,” 2019.

Published

2025-08-10

Issue

Section

Artikel